Asymptotics of Randomly Stopped Sequences with Independent Increments

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of randomly stopped sums in the presence of heavy tails

DENIS DENISOV1,2,* , SERGUEI FOSS2,3,**,† and DMITRY KORSHUNOV3,‡ 1School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK. E-mail: [email protected] 2School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK. E-mail: *[email protected]; **[email protected] 3Sobolev Institute of Mathematics, 4 Koptyuga pr., Novosibirsk 630090, Russia. E-mail: †[email protected]; ‡Korshunov@m...

متن کامل

The entropy of a randomly stopped sequence

A Wald-like equation is proved for the entropy of a ran-db@y, stopped sequence of independent identically distributed discrete random variables XI, X2,. with a nonanticipating stopping time N.

متن کامل

Randomly stopped sums: models and psychological applications

This paper describes an approach to modeling the sums of a continuous random variable over a number of measurement occasions when the number of occasions also is a random variable. A typical example is summing the amounts of time spent attending to pieces of information in an information search task leading to a decision to obtain the total time taken to decide. Although there is a large litera...

متن کامل

On Runs in Independent Sequences

Given an i.i.d. sequence of n letters from a finite alphabet, we consider the length of the longest run of any letter. In the equiprobable case, results for this run turn out to be closely related to the well-known results for the longest run of a given letter. For coin-tossing, tail probabilities are compared for both kinds of runs via Poisson approximation.

متن کامل

Asymptotics for Random Walks with Dependent Heavy-tailed Increments

Abstract: We consider a random walk {Sn} with dependent heavy-tailed increments and negative drift. We study the asymptotics for the tail probability P{supn Sn > x} as x→∞. If the increments of {Sn} are independent then the exact asymptotic behavior of P{supn Sn > x} is well known. We investigate the case in which the increments are given as a one-sided asymptotically stationary linear process....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1973

ISSN: 0091-1798

DOI: 10.1214/aop/1176996984